Constant Force Feedback Controller Design Using PID-Like Fuzzy Technique for Tapping Mode Atomic Force Microscopes
نویسنده
چکیده
A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy controller and a PI controller, is designed to regulate the controller efforts and schedule the applied voltage of the Z-axis of the piezoelectric tube scanner to maintain a constant tip-sample interaction force during sample-scanning. Using the PID-like fuzzy controller allows the cantilever tip to track sample surface rapidly and accurately even though the topography of the surface is arbitrary and not given in advance. This rapid tracking response facilitates us to observe samples with high aspect ratio micro structures accurately and quickly. Besides, the overshoot which will result in tip crash in commercial AFMs with a traditional PID controller could be avoided. Additionally, the controller efforts can be intelligently scheduled by using the fuzzy logic. Thus, continuous manual gain-tuning by trial and error such as those in commercial AFMs is alleviated. In final, computer simulations and experimental verifications are provided to demonstrate the effectiveness and confirm the validity of the proposed controller.
منابع مشابه
High performance feedback for fast scanning atomic force microscopes
We identify the dynamics of an atomic force microscope ~AFM! in order to design a feedback controller that enables faster image acquisition at reduced imaging error compared to the now generally employed proportional integral differential ~PID! controllers. First, a force model for the tip–sample interaction in an AFM is used to show that the dynamic behavior of the cantilever working in contac...
متن کاملDigital force-feedback for protein unfolding experiments using atomic force microscopy
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand–receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds...
متن کاملHigh-speed atomic force microscope imaging: adaptive multiloop mode.
In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging ...
متن کاملDesign of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System
A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...
متن کاملDynamic proportional-integral-differential controller for high-speed atomic force microscopy
In tapping mode atomic force microscopy, the cantilever tip intermittently taps the sample as the tip scans over the surface. This mode is suitable for imaging fragile samples such as biological macromolecules, because vertical oscillation of the cantilever reduces lateral forces between the tip and sample. However, the tapping force vertical force is not necessarily weak enough for delicate sa...
متن کامل